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Ground Shock Profiles for an Accidental Explosion
at the Proposed Large Rocket Test Facility at
Arnold Engineering Development Center

Abstract

This study is an assessmant of the ground shock in profile which may be gener-
ated in the event of an accidental explosion at the proposed Large Rocket Test Facility
(LRTF) at Amold Engineering Development Center {AEDC). The assessment is accom-
plished by using the results of a previous study by the author and by reviewing existing
ground motion data at depth, for sites with similar geology to expected conditions at
AEDC. Empirical relationships are developed from these data and the relationships are
used to predict the ground motion in profile. As indicated above, the surface ground
motion predictions were developed in a previous study by the author and rely upon an
existing relationship (Lipner et al.) to predict surface velocity. Empirical relationships
developed in the course of the previous study, predict surface acceleration and dis-
placement. The empirical relationships daveloped in this study are used to predict
acceleration, velocity, and displacement at depth. The ground motions are presented in
table form and as profile plots. The results of this study and previous studies by the

same author are intended to be used for svaluating the siting of the LRTF.

Introduction

This study is an extension of two sarlier
studies (Refs. 1 and 2), which developed
empirical estimates of ground motions in the
event of an accidental explosion at the proposed
Large Racket Tast Facllity (LRTF) or the exIsting
J5 rocket developmentl 1est cell on the Amold
Engineering Development Center (AEDG),
Arnokd Air Force Station, Tennessee. in the first
study, the empirical relationships wers devel-
oped for LRTF constructed with no earth
covering. Other studies (Ref. 3) conducted at
that time indlcated that the fragmentidebris,
blast overpressures, and blast focusing gener-
ated from an accklental explosion were
disadvantageous.

Earth covering of the proposed LRTF
would reduce or eliminate damage due to
fragmen¥debris, blast overpressure, and
focusing, but, is disadvanlagecus because i
would Increase the effects ol ground shock.
This concem led to ihe second study, which

evaluates ground motions for an earth-covered
LRTF. An evalualion of cost and operational
concems has led to a preferred choice of a
surface constructed LRTF but with & barometric
well sited at depth some distance from LRTF,
Concern over siting of the barometric well led to
this study, which avaluates ground motion at
depth fom an accidental explesion at a
surface-sited LRTF.

As indicated, the results of this study can
be used %o estimate ground motions at depth in
the event of an accidental explosion at the
proposed LATF.

Site Description

The site information was provided by E.
M. Caldwell from AEDC and J. Kent Lominac,
Area Engineer with the U.S. Army Comps of
Engineers. Caldwell fumished the surface
Information by making available the USDA Scil
Survey for Coffee County, Tennessee. Lominac
furnished the subsurface information by making
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available various soil-boring investigations
conducted by the U.S. Amy Corps of Engineers
and Dames & Moore.

Arnold Alr Force Station Is in south-
ceniral Tennessee, approXimately 70 miles
southeast of Nashville. The site for the pro-
posed LRTF facility at AEDGC is localed on the
northeast side of the Retention Reservoir, about
one-haf mile northwest of the J4 and J5 racket
development test cells (Rel. 4) and ap-
proximately one mile northwest of the
Aeropropulsion Systems Test Facllity.

Geologically, AEDC is iocated in the
Highland Rim Physiographic Province near the
drainage divide of the Duck and EX Rivers. The
Central Basin is west of AEDC; east of AEDC is
the transition to the Cumberland Plaleau, which
is followed by the Valley, the Ridge, and the
Blua Ridge Provinces.

Surface elavations range from about 980
ft to 1200 #f. AEDC is at approximately 1100 ft
elevation,

The overburden at AEDGC is primarily
limestone/dolomite residual material formed by
weathering of in situ bedrock. The soil can
contain large amounts of residual chert, occur-
ring as angular blocks and fragments. The U.S.
Army Corps of Engineers soll-boring investiga-
tions indicate that the chert can be so concen-
trated as to be mistaken for bedrock. The
overburden also contains sand, gravel, and sikt
mixtures.

The first sound rock occurs at a falrdy
uniform elevation ranging from 1038 to 1043 ft.
Approximately 28 ft of hard, densae, light gray,
massive, siliceous limesiong exists, containing
some cavities filled with calcite crystals. The
fimestone has tested out sound and un-
waathered except for approximately horizontal
bedding planes in the first 5 to 15 ft. These
planes, or seams, vary in thickness from 2 to 18
in.; they are evidanced by leaching and solution
oxidation discoloration.

Bslw the limestone, a 19- to 21-fi-thick
shale formation occurs (Chattanooga Shale) at a
fairly uniform slevation ranging from 1011 fo
1014 ff. The shale is hard, dense, black, and
camented. It appears to be exiremely fissile at
the top and fairly thick-bedded at the bottom.

Underying 1he shale Is a shaley lime-
stone, identified as the Catheys Formation of

the Trenton Group. This shaley timestone Is
hard, dense, and light-to-dark mottled gray in
color.

A static groundwater level has been
measured 6 to 18 ft below ground surace.
Dames & Moore of Atlanta reported that the
near-surface groundwater resulted from a
combination of shallow waler conditions,
perched water, leakage from underlying artesian
aquifers, and surface accumulation. Ground-
water Investigations cared out by the U.S.
Amy Corps of Engineers identifiad the pervious
zone at the top of the first sound rock as an
arlesian aquifar.

Surface Burst Ground
Shock Phenomenology

Explosive detonations produce motions
and stresses In the earh’s surface. These
metions and stresses are collectively called
ground sheck. The ground shock induced by
explosive detonations depends on the explosive
type. design, yleld, the height-of-burst (HOB) or
depth-of-burst (DOB), and site characteristics.
Three general types of ground shock have been
defined (Ref. 5):

Alrblast-Induced (Al) Ground Shock--
air pressure waves are generated by
an explosion which is "vented” to the
surface. These pressure waves push
upon the ground surface and induce
ground stresses and rmotlons.

Direct-Induced (DI) Ground Shock--
surface or underground explsions
produce explosive gases. These
gases push againsi the surrounding
medium and induce ground stresses
and motions.

Crater-Induced (Cl} Ground Shock-- *
the explosive energy displaces the
medium. As the earth materal is
thrown outward, it pushes against the
adjacent media, inducing ground
siresses and motlons.

For a surface burst, the phenomenclogy at
early-time is dominated by airblast effects. The



airblast arrives first, causing air slap on the
ground suriace. This produces strong
downward and outward mations, Compresslonal
motions follow and are associated with the DIfCI
ground shock. These compressional motiohs
ara a dominant late-tima phanomena, producing
large upward and outward bow-Trequency ground
motion. The range and magnitude of the Al or
DICI ground motions are dependent on the
yield, HOB, and site conditions. It shouk! be
noted that, close-in and al early-lime, ground
motion wilt be Al or DICI, but generally not both.

With increasing range irom the burst
point, the relatively simple motions become &
complex wavetrain of surface waves. These
surface waves appear 1o be relatively insansitiva
to blast geomstry. As the horizontal distance
from detcnation increases, the complex
wavelrain of surface waves is similar for a
buriad cratering burst, for a surface burst, or for
an air burst.

Ground-energy coupling is dependert on
saveral factors beside yield, of which the most
significant are blast design characterlstics, HOB,
and site properties. Blast design characteristics
inclsde blast source concentralion (spharical
point scurce, directed source, ling source, efc.)
and type of blast. The design of the blast
source (i.e., conceniration) aids in directing the
enargy. The type of blast also affects ground-
energy coupling. High explosive sources (TNT,
PETN, PBX, efc.) have been found to be
approximately twice as efficient as a nuclear
source in generaling airblast; conventional
explosives convert most of the energy into blast
and shock while a nuclear source expends a
porticn of its energy thermally.

The effect of HOB is a major contributor
in ground-enargy coupling. As HOB increases,
Al effects bscome more dominant, with DVCI
offaclts diminishing. In general, as HOB in-
creases and Al effects dominate, the close-in
earfy-time ground motion is maximum in the
vertical direction. Alternately, as DI/Cl effects
dominate, the close-in early-time ground meotion
Is maximum in the horizontal direction.

' Because many site property effects
influence ground-energy coupling, these effects
can only be broadly generalized. For non-
homogeneous geolegical layering, stiffer layers
fransmit shock faster. Thus, ground shock in a
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stiffer layer at depth can outrun the airblast
conditions still in existence near the surface.
Layering and stiffness can also have the effect
of strengihening ground shock by wave
reflection.

As indicated, the ground shock will be a
result of sither Al or DICI effects and can be
broken down into three regions of disturbance
types: supersgismic, transseismic, and subseis-
mic {Ref. 6).

Media, such as soil, rock, and water,
propagate wave disturbances at velocities that
are functions of the material properties. Af the
ground surface, three typas of wave disturbance
produce the majority of the ground motion; they
are identified as primary {p), secondary (s), and
Raylelgh waves. The p- and s-waves are also
known as body waves and are, respeclively,
compressional and shear in nature. Rayleigh
waves are also known as surface waves. The ,
presence of all three waves Is not limited to the
surface, but the Rayleigh wave attenuates
rapidly with depth. Flint and Skinner further
describe 1he manner in which these waves
deform solids (Ref. 7). The speeds of propaga-
tion (C) of these waves ara ralated as follows:

C,:C.:-Cn.

where C, Is the p-wave propagation velocily, C,
is the s-wave propagation velocily, and Cqis the
Rayleigh wave propagation velocity. The above
relationship indicales a point at or just beneath
the surface is first atfected by the p-wave amival,
second by s-wave arrival, and finally by arrival of
the Rayleigh wave. At the surface, the p- and
s-waves dacay faster with range than does the
Rayleigh wave.

The superseismic region is defined as
that region where airblast. velocily exceeds all
wave propagation valoclties:

U:Cpsc.,

where U is the airblast velocity. Since U is
larger than C, or C;, no disturbance exists
ahead of the airblast, and ground shock trails
airblast. ‘ .
When airblast shock velocity falls below
the p-wave propagation velocity but still exceeds
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the s-wave propagation, the reglon is known as
transseismic. In this region, compressional
disturbances can propagate in the ground
ahead of the airblast:

C,>U>C,.

When aiblast velocity fafls below the
g-wave propagation, the subselismic case exIsts:

C,>C,>U.

For both firansseismic and subseismic
regions, compressional and shear disturbances
can propagate through the ground ahead of the
airblast shock. For that reason, they are often
collectively referred 1o as the outrunning region
to indicate that ground shock has outrun the
airblast shock.

) Several factors can influence or contrib-
ute to the complex nature of the surlace waves
at early- or late-time. Ona resuli of such
influence or contribulion could be refracted and
reflacted waves outrunning airblast shock when
superselsmic conditions would otherwise exist at
the surlace. Another could be the existence of
superseismic conditions when outrunning
conditions would otherwise exist at the surlace.

Study Methodology

Competent ground shock prédiction for a
site can be obtained through the use of large-
scale computer code modeling techniques.
Simplified computer techniques are avallable
{Ref.8), but have large uncertainties associated
with them. Most of the techniques are based on
some combination of data from theoretical
siudies and fisld test observations. These
tachniques approximate the complete environ-
ment that will result from disturbances arriving
from all sources by superimposing air delona-
tion, surface detonation, and contained detona-
tion motion according to their relative
time-phasing.

For this study, appropriate high-explosive
(HE) events, which have geology gimilar to tha
AEDC site, were identifiad and the data used 1o
develop empirical relatlonships 1o predicted
expected ground motions al depth due to a

10

surface detonation. A previous reporl (Ref. 1)
predicts ground motions for the case of a
surface explosion; this report concentrates on
the conditions at depth resulting from a surface
detonation.

As indicated in the discussion of ground
shock phenomenology, sité property effects
infiuence ground-gnergy coupling. In general,
gtiffer layers transmit shock faster. The contacts
belween various geologic zonee or a
groundwater table serve as refraction bound-
aries. Ground shock is refracted from thess
boundaries as an upward-moving pulse. On the
surface this is manifested by ground shock
outrunning the airblast motion and at depth the
ground shock outruns the surface expression.

AEDC has the general site condition of
approximately 80 ft of wet (groundwater table
[GWT] of about 12-18 ft), layered soil made up
of clays, sits, and sands overying
limestone/dolomite.

Several HE events were identifled as
having geology comparabie to AEDC. The flrst
of thase are the Distant Plain events (Refs. 9 &
10). These experiments were conducted at the
Suffield Experiment Station in Alberta, Canada.
There are two different geclogies that exist at
this experiment station. The first consisis of 10
ft of sity clay overlying fine free-flowing sand.
The depth to rock is about 200 ft. The water
table Is at 23 ft. The second site geology
consists of saturated glaclal till extending down
1o bedrock at about 100 ft.

The second set of HE events idantified
were the Prairie Flat tests (Ref. 11). These
were HE tests also conducted at the Suffieki
Experiment Station.

The third sel of HE avents identified were
the Flat Top tests (Ref. 10). These were HE
tesis conducted at the Nevada Test Site {NTS}
on Frenchman Flats. The site consists of
geveral hundrad ft of dry, fine-grained silt and
geologically does not compare well to AEDC or
the Suffield Experiment Station. But, the scaled
data agrees well with the Distant Plain and
Prairie Flat results.

The final sel ol HE events identified were
the Mine Shafi Serles of fests known as Mine
Under, Mine Ore, and Mineral Rock {Refs. 13 &
14). Thase tests were conducted outsikle Cedar
City, Utah, and were specifically designed to



investigate the phenomencn of oQutrunning
ground motion.

Acceleration Prediction

The acceleration dala collected Is
presented in Figs. 1 - 6. Least Squares Regres-
slon Analyses ware parformed on the data; the
resulting relationships are indicated on the
figures, where W Is the yield in tons, R is the
range in ft, and a is acceleration in g. In an
earlier study (Ref. 1), relationships for predicting
surface ground motion were explored. The
recommended surface ground acceleration
expressions were reporied as fallows:

a, = 6.7 x 10° (R/W13)-19 m
ay, = 1.7 X 105 (RIW1R)1.0 @

where W Is yield in kilotons, R is the range in ft,
and a is acceleration in g. Table 1 presents the
predicted ground acceleration with range and
depth for a 50T TNT equivalent explosion at
LRTF.

Velocity Prediction

The velocity data collected is presenied in
Figs. 7 - 14. Least Squares Regression Analy-
ses were performed on the data; the resulting
relationships are indicated on the figures, whera
W is yield in tons, R is the range in #, and v is
velocity in ft/sec. In the earlier study (Ref. 1),
refationships for predicting surdace ground
molion were explcred. The recommended
surface ground wvelocily exprassions were
reporied as foliows:

v, = (2W/MT) 12 (10,000 fUR) 32 @)
v, = 0.55 (2W/MT) 12(10,000 /R) 22 (4)

where R is the range in ft, W Is the yleld in tons,
and v is the velocity in fi/sec. Table 2 presents
the predicted ground vebocity wilh range and
depth for 50T TNT equivalent explosion at
LRTF.

1n
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Displacement Prediction

The displacement data collecled is
presened in Figs. 15-22. Least Squares
Ragression Analyses were performed on the
data; the rasulting relationships are indicatad on
the figures, where W is the yield in tons, R is the
range in ft, and d is displacement in ft. In an
earlier study (Ref. 1), relationships for predicting
surlace ground moticn were explored. The
racommended surface ground displacemant
exprassion was reported as follows:

/W13 = 1 x 108 (RAW1) 28 (5)

where R is the range in fi, W is the yield in
kilotons, and d is the displacement in inches.
Table 3 presents the predicted ground displace-
ment with range and depth for a 50T TNT
etuivalerd explosion at LRTF.

Results

The near-surface and at-depth accelera-
tion, velocity, and displacemeant ground motions
for detonation of a 50T TNT equivalemt explo-
son are listed in Tables 1, 2, and 3. It shoauld be
noted 1hat these values are only a best guess of
ihe ground motions which will be generated in
ihe event of a 50T TNT equivalent accidental
axplesion at LRTF. Actual site conditions may
cause values either higher or lower than those
predicied. Noteworthy site conditions which can
impact the ground mwotions generated are the
site specific soll conditions and ihe structural
configuration of LRTF. For example, if the
tacilty includes a blast wall with foundation to
depth, then more coupling of ground motion,
paricularly at the foundation base, will otcur
than indicated in this sludy. The usa of a berm
instead of a blast wall would serve the purpose
of impeding air blast’debris without providing the
potential of enhancing ground motion at depth.
It must be remembered that ground motion at
depth is of Importance to the issue of placement
of the buried barometric well. The best method
of evaluating expected ground motiens is to
conduct sile specHic studies and idenfify the
response of the AEDC Site. Figures 23 and 24
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give the peak vertical and horizontal ground
acceleration profilgs, respectfully, for a 50T TNT
equivalent suface explosion, Peak vertical and
horizental ground velacity profilas for a SOT TNT
aquivalent surfaca explosion are shown in Figs.
25 and 26. Profiles of vertical and horizontal
ground displacement for a 50T TNT equivalent
surface daetonation at the proposed LRTF are
shown in Figs. 27 and 28.

12

Recommendation

As discussed in the previous studies
{Refs. 1 & 2), it is recommended that v = 2 ips
(v =0.187 ips) be used as a lower bound for an
Indication of structural damage. This correlates
to a ground acceleration of 0.15 to 0.25 g. Table
2 gives ranges for the 2 ips ground velocily
contour for 8 50T TNT aquivalent explosion. The
range of the 2-ips contour should be examined
when considering the sling of the proposed
barometric well. Cost considerations need 1o be
evaluated as to whether the barometric well
should be sited furlher away, or adequalely
engineered % withstand ihe ground motions.
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Tabla 1. Psak accelerstions and associatad ranges for a 50T TNT aquivalant surface sxplosion at LRTF.

RANGE (f1)

Surface § ft depth 10fidepth 181 depth

s, (g): 300. 717 274 16.2 26.9
150. 103.2 430 25.9 379
75. 148.6 675 414 533
50. 184.0 87.8 54.4 B5.0
25. 285.0 137.7 a7.0 91.6
20. 298.0 159.2 101.1 102.1
15, 348.7 191.9 122.8 1177
10, 429.2 249.7 161.5 1437
9. 453.7 267.4 1734 151.4
8. 4827 288.7 187.8 180.4
7. 517.9 314.8 205.5 1713
6. 561.6 348.0 228.1 184.8
5, 618.2 201.7 258.0 2022
4, 605.2 4528 800.0 2257
3. 808.9 545.8 364.3 260.0
2. 10013 710.2 479.2 375
1. 14424 1113.0 765.4 446.8
8 15243 11928 821.9 4708

4 16218 1287.8 890.0 498.7

7 17399 1404.2 974.0 532.6

5  1886.9 1852.0 1080.9 574.6

5 20770 1747.1 1222.6 628.6

A 23358 2019.5 1421.6 701.6

a nz 2434.3 1726.8 808.4

2 33649 3187.5 2070.7 987.2
15 39144 3818.1 2757.9 11375
1 48452 4988.1 3627.2 1388.9
05 69783 TI923 ... 57828 1854.2
a, {g): 50. 59.4 38.0 26.7 46.2
25. 915 50.8 45 €3.8
20. 105.2 68.9 50.9 70.7
15. 126.0 8a1 623 80.8
10, 1623 108.1 829 7.6
9, 173.4 115.8 80.3 102.5
8. 186.6 125.0 97.0 108.3
7. 2028 136.3 1065 116.2
8. 2234 150.8 118.8 123.8
5. 250.3 169.6 1188 123.8
4, 287.8 196.0 158.0 1495
3. 3445 236.3 1835 170.9
2, 4438 307.4 257.4 208.4
1. 684.5 4822 4104 284.9
9 7311 516.3 4517 299.2

8 7869 557.4 400.8 3181

7 8554 607:8 539.2 3363

6 9419 671.8 801.0 361.3

5 10858 756.3 683.4 303.3

4 12138 874.2 709.7 438.3

3 14526 1053.8 e79.2 498.8

2 18718 1371.1 1302.8 802.3
5 22403 1852.8 1505.4 698.5

1 28864 2150.8 21227 831.4
05 44514 3373.1 3458.4 1147.7
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Table 2. Peak velocities and associated rangas for a 50T TNT equivaient surfaca sxplosion at LRTF.

RANGE {ft)

Surface 5 ft depth 10fidepth 18ftdepth 24 ft depth
v, (ips): 15. 76.3 48.9 41,0 224 456
10. 100.0 64.3 52.8 304 573
5. 150.7 102.3 a1.4 514 849
4, 1842 118.9 938 60.9 96.2
3. 223.1 144.2 112.0 757 113.2
2. 292.4 189.3 1444 1029 1423
1. 464.2 301.4 2226 174.0 2108
5 497.9 3234 237.8 1885 2235
B 538.6 350.0 255.3 206.1 2389
T 588.8 3028 2782 228.0 2578
8 652.5 424.6 306.4 256.2 2810
5 738.8 479.9 3433 2942 ans
4 B855.0 5574 3947 3484 353.4
3 1035.7 676.1 4725 433.2 415.7
2 1357.2 8875 608.7 589.0 522.7
15 1644.1 1076.5 728.6 7324 615.0
A 2154.4 1413.2 9380 9857 7733
.08 2311.2 1516.8 1002.7 1078.5 820.7
.08 2500.0 1641.8 1079.3 1179.1 877.2
o7 27328 1795.5 1173.2 1304.6 945.0
08 30285 1991.2 1291.9 1466.9 1032.0
05 32400 2250.3 1447.8 1683.4 1144.0
04 3068.5 2613.9 1664.5 19635 1207.7
03 48075 31706 1992.4 24705 1526.8
.02 6299.86 4162.2 2567.0 33703 1919.8
01 100000 3958.9 2ea7 9 2840.1
v, (lps): 75 763 50.5 48, 525 §9.5
50 100.0 64.9 B15 65.8 711
25 158.7 883 923 96.9 96.4
2.0 1842 1124 105.2 1088 106.3
15 223.1 1335 124.4 128.8 120.6
1.0 2024 170.2 157.7 161.7 144.0
5 484 2 257.8 236.6 238.2 195.2
45 497.9 274.6 251.8 2528 204.4
4 538.6 294.8 2605 269.9 215.3
a5 588.8 319.2 2914 290.7 228.2
3 652.5 350.0 3189 3169 2442
25 7368 390.4 3548 3509 284 5
2 855.0 446.2 404.3 3074 201.7
R 1035.7 530.1 4783 466.7 as3t.0
| 13572 8758 606.3 585.4 3954
075 18441 802.8 7174 687.4 448.6
.05 21544 1023.4 2809.4 862.2 535.9
045 2311.2 1090.1 857.2 9145 561.2
.04 2500.0 1160.7 1036.1 976.7 591.0
035 27328 1267.1 11203 1052.3 626.6
.03 30285 1389.6 1228.0 1147.0 B70.4
025 3240.0 1549.9 1363.9 1270.0 726.3
02 3964.5 175 1554.0 14386 800.9
015 4807.5 21045 1838.7 1689.4 908.6
.01 6299.6 26829 2330.7 2118.8 1085.5
.005 10000.0 4063.1 3495.7 31209 14711
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Table 3. Peak displacaments and assoclated ranges for a 50T TNT aquivalent surlace explosion st LRTF.

RANGE (it)

Surface 5 ft dapth 10fidepih 1B8ftdepth 24 ft depth

d, {in): 300. 24.2 246 237 13.2 34.2
150. no 314 29.8 17.7 41.4
75. 39.7 40.1 s 239 50.2
50. 459 45.2 42.8 28.4 £8.0
25. 588 58.8 53.8 382 87.9
20. 6a.7 633 87.7 41.9 720
15, 706 705 63.9 478 7.4
10. 1.6 824 741 580 88.7
5. 104.5 1051 §3.2 78.2 107.4
4 1131 116.3 102.6 B&.S 116.3
a. 1254 124.0 108.9 B5.7 122.4
2. 1449 134.1 117.3 105.4 130.2

1. 185.6 184.9 158.9 156.4 167.8
75 205.7 204.8 174.8 1771 181.7

50 237.7 2358 199.9 210.9 203.3
25 3045 3008 25%.4 284.3 246.3

.15 3655 3838 316.3 3paa 2585

05 541.0 520.0 428.4 569.0 384.7
025 €93.0 674.7 538.8 7671 488.2
995 12313 e BEER3 9183, 1535, 7280
d,(in): 300. 242 249 226 10.8 s
150. 31.0 320 291 14.0 40,0
75. 39.7 412 az.ae 209 50.8
50, 459 47.8 435 25.3 58.3
25. 5488 61.4 56.1 BS5 741
20. 83.7 66.3 €0.7 394 79.8
15, 706 74.2 67.8 458 88.7
10. 816 873 80.1 569 1035
5 1045 1125 103.3 798 1318
4, 131 1249 114.8 818 145.4
3. 125.4 1335 1228 100.3 154.8
2. 1449 144.8 1333 1119 1673
1. 185.6 2023 186.7 1749 2207
75 205.7 2247 2075 2013 253.7

50 23r.7 2606 240.8 2453 201.9

25 3045 3356 310.8 3440 371.0

A5 3655 4322 400.9 482.4 471.8

.05 541.0 603.8 561.8 7542 847.6
025 £93.0 7776 724.5 1057.7 8231
005 1231.3 3242.1 1308.3 23191 1436.5
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